Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.158
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 523-532, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597444

RESUMO

OBJECTIVE: To investigate the effect of asiaticoside on blood pressure and relaxation of thoracic aorta in rats and explore the underlying mechanism. METHODS: SD rats treated with 50 and 100 mg/kg asiaticoside by daily gavage for 2 weeks were monitored for systolic blood pressure changes, and histological changes of the thoracic aorta were evaluated using HE staining. In isolated rat endothelium-intact and endothelium-denuded thoracic aorta rings, the effects of asiaticoside on relaxation of the aortic rings were tested at baseline and following norepinephrine (NE)- and KCl-induced constriction. The vascular relaxation effect of asiaticoside was further observed in NE-stimulated endothelium-intact rat aortic rings pretreated with L-nitroarginine methyl ester, indomethacin, zinc protoporphyrin Ⅸ, tetraethyl ammonium chloride, glibenclamide, barium chloride, Iberiotoxin, 4-aminopyridine, or TASK-1-IN-1. The aortic rings were treated with KCl and NE followed by increasing concentrations of CaCl2 to investigate the effect of asiaticoside on vasoconstriction induced by external calcium influx and internal calcium release. RESULTS: Asiaticoside at 50 and 100 mg/kg significantly lowered systolic blood pressure in rats without affecting the thoracic aorta histomorphology. While not obviously affecting resting aortic rings with intact endothelium, asiaticoside at 100 mg/kg induced significant relaxation of the rings constricted by KCl and NE, but its effects differed between endothelium-intact and endothelium-denuded rings. In endothelium-intact aortic rings pretreated with indomethacin, ZnPP Ⅸ, barium chloride, glyburide, TASK-1-IN-1 and 4-aminopyridine, asiaticoside did not produce significant effect on NE-induced vasoconstriction, and tetraethylammonium, Iberiotoxin and L-nitroarginine methyl ester all inhibited the relaxation effect of asiaticoside. In KCland NE-treated rings, asiaticoside obviously inhibited CaCl2-induced vascular contraction. CONCLUSION: Asiaticoside induces thoracic aorta relaxation by mediating high-conductance calcium-activated potassium channel opening, promoting nitric oxide release from endothelial cells and regulating Ca2+ influx and outflow, thereby reducing systolic blood pressure in rats.


Assuntos
Aorta Torácica , Compostos de Bário , Cloretos , Triterpenos , Vasodilatação , Ratos , Animais , Pressão Sanguínea , Células Endoteliais , Cálcio , Cloreto de Cálcio/farmacologia , Nitroarginina/farmacologia , Ratos Sprague-Dawley , 4-Aminopiridina/farmacologia , Indometacina/farmacologia , Ésteres/farmacologia , Endotélio Vascular , Relação Dose-Resposta a Droga
2.
Respir Physiol Neurobiol ; 324: 104251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492830

RESUMO

PURPOSE: Extracellular acidification is a major component of tissue inflammation, including airway inflammation in asthmatics. However, its physiological/pathophysiological significance in bronchial function is not fully understood. Currently, the functional role of extracellular acidification on bronchial contraction was explored. METHODS: Left main bronchi were isolated from male BALB/c mice. Epithelium-removed tissues were exposed to acidic pH under submaximal contraction induced by 10-5 M acetylcholine in the presence or absence of a COX inhibitor indomethacin (10-6 M). Effects of AH6809 (10-6 M, an EP2 receptor antagonist), BW A868C (10-7 M, a DP receptor antagonist) and CAY10441 (3×10-6 M, an IP receptor antagonist) on the acidification-induced change in tension were determined. The release of prostaglandin E2 (PGE2) from epithelium-denuded tissues in response to acidic pH was assessed using an ELISA. RESULTS: In the bronchi stimulated with acetylcholine, change in the extracellular pH from 7.4 to 6.8 caused a transient augmentation of contraction followed by a sustained relaxing response. The latter inhibitory response was abolished by indomethacin and AH6809 but not by BW A868C or CAY10441. Both indomethacin and AH6809 significantly increased potency and efficacy of acetylcholine at pH 6.8. Stimulation with low pH caused an increase in PGE2 release from epithelium-denuded bronchi. Interestingly, the acidic pH-induced bronchial relaxation was significantly reduced in a murine asthma model that had a bronchial hyperresponsiveness to acetylcholine. CONCLUSION: Taken together, extracellular acidification could inhibit the bronchial contraction via autocrine activation of EP2 receptors. The diminished acidic pH-mediated inhibition of bronchial tone may contribute to excessive bronchoconstriction in inflamed airways such as asthma.


Assuntos
Acetilcolina , Asma , Compostos de Benzil , Imidazóis , Animais , Masculino , Camundongos , Acetilcolina/farmacologia , Brônquios , Dinoprostona/metabolismo , Concentração de Íons de Hidrogênio , Indometacina/farmacologia , Inflamação , Contração Muscular , Camundongos Endogâmicos BALB C
3.
Inflammopharmacology ; 32(2): 909-915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492182

RESUMO

The aim of the study was to investigate the effects of rat housing conditions-standard conditions, social isolation, environmental enrichment-and the subsequent reversal of these conditions on the vulnerability of the gastric mucosa to ulcerogenic stimuli, somatic pain sensitivity, and treadmill work capacity. Rats, aged 30 days, were placed in standard conditions (SC), social isolation (Is), and environmental enrichment (EE) for 4 weeks. Then half of each group underwent a reversal of housing conditions: SC rats were moved to Is, Is rats were placed in EE, EE rats were moved to Is, for 2 weeks. The other half served as a control with no change in their initial housing. Two weeks after the reversal, vulnerability of the gastric mucosa to ulcerogenic action of indomethacin (IM, 35 mg/kg, sc), somatic pain sensitivity (hot plate test), and work capacity (measured by the running distance on a treadmill) were assessed in control and reversed groups. Social isolation induced a proulcerogenic effect, increasing IM-induced gastric erosions, which was effectively reversed when rats were transferred to an environmental enrichment. Conversely, transferring rats from an environmental enrichment to social isolation exacerbated ulcerogenic action of IM. Somatic pain sensitivity and treadmill work capacity were also influenced by housing conditions, with environmental enrichment showing positive effects. The present findings show that social isolation of rats induces a proulcerogenic effect. Environmental enrichment reverses proulcerogenic action of social isolation on the gastric mucosa and increases resilience to pain stimuli and treadmill work capacity.


Assuntos
Indometacina , Dor Nociceptiva , Ratos , Animais , Ratos Sprague-Dawley , Indometacina/farmacologia , Mucosa Gástrica , Isolamento Social
4.
Braz J Biol ; 83: e277354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452187

RESUMO

This study aimed to explore the diuretic activity of linalyl acetate (LA). LA is an essential oil, it is an integral phyto-constituent of various plants. In this study, acute and chronic diuretic activities were explored by measuring the levels of different electrolytes and pH in the urine of experimental rats. Rats were divided into five groups. The control group was given 10 mg/kg normal saline, the treated group was given 10 mg/kg furosemide, and the remaining 3 groups received different doses of LA including 25, 50, and 75 mg/kg through intraperitoneal route, to determine its diuretic potential. Urine volume for acute diuretic activity was measured for 6 hours however for chronic diuretic activity was measured for 6 days. For a comparative study of LA with a control group and treated group with reference drug, diuretic index was used. Moreover, the underlying mechanism of the diuretic activity was also explored by comparing atropine, L-NAME, and indomethacin. The results of each group with 6 rats in each group were obtained by ± standard error of the mean of every group. Analysis of Variance (ANOVA) was used for statistical analysis. Results revealed that the LA 75 mg/kg dose showed comparable results as of furosemide. Moreover, this study revealed the involvement of muscarinic receptors to produce diuresis in comparison with atropine with very little involvement of prostanoids and no effect on NO pathway induced by indomethacin and L-NAME respectively. It is concluded that LA possess anti-diuretic potential. Muscarinic receptors might be involved in producing diuretic effects.


Assuntos
Diuréticos , Furosemida , Monoterpenos , Ratos , Animais , Furosemida/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Diuréticos/farmacologia , Indometacina/farmacologia , Atropina/farmacologia , Extratos Vegetais/farmacologia , Receptores Muscarínicos
5.
J Int Soc Sports Nutr ; 21(1): 2302046, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38198469

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, flurbiprofen, naproxen sodium, and indomethacin are commonly employed for their pain-relieving and inflammation-reducing qualities. NSAIDs work by blocking COX-1 and/or COX-2, enzymes which play roles in inflammation, fever, and pain. The main difference among NSAIDs lies in their affinity to these enzymes, which in turn, influences prostaglandin secretion, and skeletal muscle growth and regeneration. The current study investigated the effects of NSAIDs on human skeletal muscle cells, focusing on myoblast proliferation, differentiation, and muscle protein synthesis signaling. METHODS: Using human primary muscle cells, we examined the dose-response impact of flurbiprofen (25-200 µM), indomethacin (25-200 µM), ibuprofen (25-200 µM), and naproxen sodium (25-200 µM), on myoblast viability, myotube area, fusion, and prostaglandin production. RESULTS: We found that supraphysiological concentrations of indomethacin inhibited myoblast proliferation (-74 ± 2% with 200 µM; -53 ± 3% with 100 µM; both p < 0.05) compared to control cells and impaired protein synthesis signaling pathways in myotubes, but only attenuated myotube fusion at the highest concentrations (-18 ± 2% with 200 µM, p < 0.05) compared to control myotubes. On the other hand, ibuprofen had no such effects. Naproxen sodium only increased cell proliferation at low concentrations (+36 ± 2% with 25 µM, p < 0.05), and flurbiprofen exhibited divergent impacts depending on the concentration whereby low concentrations improved cell proliferation (+17 ± 1% with 25 µM, p < 0.05) but high concentrations inhibited cell proliferation (-32 ± 1% with 200 µM, p < 0.05). CONCLUSION: Our findings suggest that indomethacin, at high concentrations, may detrimentally affect myoblast proliferation and differentiation via an AKT-dependent mechanism, and thus provide new understanding of NSAIDs' effects on skeletal muscle cell development.


Assuntos
Flurbiprofeno , Naproxeno , Humanos , Naproxeno/farmacologia , Ibuprofeno/farmacologia , Flurbiprofeno/farmacologia , Indometacina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Fibras Musculares Esqueléticas , Inflamação , Dor , Prostaglandinas
6.
Mol Biol Rep ; 51(1): 84, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183522

RESUMO

PURPOSE: Investigate the role of COX signaling in activating the PGE2-EP2 pathway. METHODS: Utilized a marine Mycobacterium infection model in zebrafish. Marine mycobacteria were stained with fluorescein isothiocyanate. The COX inhibitor indomethacin, EP2 receptor inhibitor AH6809, EP4 receptor inhibitor AH23848 and clodronate Liposomes were used to investigate the role of COX, EP2, EP4 and macrophage whether participating in combat marine mycobacterial infection. The expression level of the target gene was detected using real-time fluorescence quantitative PCR instrument. RESULTS: The findings revealed that larvae exposed to the COX inhibitor indomethacin or the EP2 receptor inhibitor AH6809 demonstrated a significantly higher mortality rate due to marine mycobacterium infection than those in the control group. Administration of exogenous prostaglandin E2 (PGE2) rescued the survival of zebrafish infected with marine mycobacteria and treated with indomethacin. Additionally, a significant reduction in survival rate was noted in macrophage-depleted zebrafish infected with marine mycobacteria. CONCLUSION: The host may combat marine mycobacterium infection via COX signaling, which activates the PGE2-EP2 pathway and mediates macrophage resistance.


Assuntos
Infecções por Mycobacterium , Mycobacterium marinum , Animais , Dinoprostona , Prostaglandina-Endoperóxido Sintases , Peixe-Zebra , Indometacina/farmacologia
7.
Int J Biol Macromol ; 256(Pt 2): 128279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992923

RESUMO

The implementation of personalized patches, tailored to individual genetic profiles and containing specific amounts of bioactive substances, has the potential to produce a transformative impact within the medical sector. There are several methods of designing scaffolds in the context of personalized medicine, with three-dimensional (3D) printing emerging as a pivotal technique. This innovative approach can be used to construct a wide variety of pharmaceutical dosage forms, characterized by variations in shape, release profile, and drug combinations, allowing precise dose individualization and the incorporation of multiple therapeutic agents. To expand the potential and applicability of personalized medicine, particularly with regards to indomethacin (IND), a drug necessitating individualized dosing, this study proposes the development of new transdermal delivery systems for IND based on hyaluronic acid and a polylactone synthesized within our research group, namely poly(ethylene brasilate-co-squaric acid) (PEBSA). The obtained systems were characterized in terms of their swelling capacity, rheological behavior, and morphological characteristics that highlighted the formation of stable three-dimensional networks. To impart specific shape and geometry to the structures, multi-component systems based on PEBSA, HA, and methacrylate gelatin were obtained. The scaffolds were loaded with IND and subsequently 3D printed. The release capacity of IND and its dependence on the relative ratios of the components comprising the scaffold composition were highlighted. The cytocompatibility studies revealed the successful development of biocompatible and noncytotoxic systems.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Gelatina , Administração Cutânea , Impressão Tridimensional , Indometacina/farmacologia
8.
Phytomedicine ; 123: 155236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016383

RESUMO

BACKGROUND: Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with a wide range of medicinal values. Our previous publication demonstrated the therapeutic effects of the water extract of A. rugosum (WEA) against gastric ulcers. However, the protective effects of the ethanol extract of A. rugosum (EEA) on gastric mucosa and its major active constituents have not yet been elucidated. PURPOSE: This study aims to evaluate the gastroprotective effects and underlying mechanisms of EEA and its fat-soluble constituent, ergosterol, in acute gastric ulcers. STUDY DESIGN AND METHOD: SD rats were pre-treated with EEA (50, 100, and 200 mg/kg) or ergosterol (5, 10, and 20 mg/kg), and acute gastric ulcer models were constructed using ethanol, gastric mucus secretion inhibitor (indomethacin) or pyloric-ligation. The gastric ulcer area, histological structure alterations (H&E staining), and mucus secretion (AB-PAS staining) were recorded. Additionally, Q-PCR, western blotting, immunohistochemistry, ELISA, molecular docking, molecular dynamics simulations, MM-GBSA analysis, and surface plasmon resonance assay (SPR) were used to investigate the underlying mechanisms of the gastroprotective effect. RESULT: Compared with WEA, which primarily exerts its anti-ulcer effects by inhibiting inflammation, EEA containing fat-soluble molecules showed more potent gastroprotective effect through the promotion of gastric mucus secretion, as the anti-ulcer activity was partly blocked by indomethacin. Meanwhile, EEA exhibited anti-inflammatory effects by suppressing the production of IL-6, IL-1ß, TNF-α, and NO, thereby inhibiting the MAPK pathway. Significantly, ergosterol (20 mg/kg), the bioactive water-insoluble compound in EEA, exhibited a gastroprotective effect comparable to that of lansoprazole (30 mg/kg). The promotion of gastric mucus secretion contributed to the effects of ergosterol, as indomethacin can completely block it. The upregulations of COX1-PGE2 and C-fos, an activator protein 1 (AP-1) transcription factor, were observed after the ergosterol treatment. Ergosterol acted as an LXRß agonist via van der Waals binding and stabilizing the LXRß protein without compromising its flexibility, thereby inducing the upregulation of AP-1 and COX-1. CONCLUSION: EEA and its primary bioactive compound, ergosterol, exert anti-ulcer effects by promoting gastric mucus secretion through the LXRß/C-fos/COX-1/PGE2 pathway.


Assuntos
Antiulcerosos , Polyporaceae , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Etanol/farmacologia , Ratos Wistar , Dinoprostona/metabolismo , Simulação de Acoplamento Molecular , Fator de Transcrição AP-1/metabolismo , Ratos Sprague-Dawley , Indometacina/farmacologia , Muco , Extratos Vegetais/química , Mucosa Gástrica , Água , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico
9.
Chembiochem ; 25(2): e202300603, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934785

RESUMO

Mitochondrion has appeared as one of the important targets for anti-cancer therapy. Subsequently, small molecule anti-cancer drugs are directed to the mitochondria for improved therapeutic efficacy. However, simultaneous imaging and impairing mitochondria by a single probe remained a major challenge. To address this, herein Chimeric Small Molecules (CSMs) encompassing drugs, fluorophore and mitochondria homing moiety were designed and synthesized through a concise strategy. Screening of the CSMs in a panel of cancer cell lines (HeLa, MCF7, A549, and HCT-116) revealed that one of the CSMs comprising Indomethacin V exhibited remarkable cervical cancer cell (HeLa) killing (IC50 =0.97 µM). This lead CSM homed into the mitochondria of HeLa cells within 1 h followed by mitochondrial damage and reactive oxygen species (ROS) generation. This novel Indomethacin V-based CSM-mediated mitochondrial damage induced programmed cell death (apoptosis). We anticipate these CSMs can be used as tools to understand the drug effects in organelle chemical biology in diseased states.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Células HeLa , Antineoplásicos/química , Mitocôndrias/metabolismo , Indometacina/metabolismo , Indometacina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Linhagem Celular Tumoral , Neoplasias/metabolismo
10.
Autophagy ; 20(1): 76-93, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647255

RESUMO

Macroautophagy/autophagy plays an important role in regulating cellular homeostasis and influences the pathogenesis of degenerative diseases. Tendinopathy is characterized by tendon degeneration and inflammation. However, little is known about the role of selective autophagy in tendinopathy. Here, we find that pristimerin (PM), a quinone methide triterpenoid, is more effective in treating tendinopathy than the first-line drug indomethacin. PM inhibits the AIM2 inflammasome and alleviates inflammation during tendinopathy by promoting the autophagic degradation of AIM2 through a PYCARD/ASC-dependent manner. A mechanistic study shows that PM enhances the K63-linked ubiquitin chains of PYCARD/ASC at K158/161, which serves as a recognition signal for SQSTM1/p62-mediated autophagic degradation of the AIM2-PYCARD/ASC complex. We further identify that PM binds the Cys53 site of deubiquitinase USP50 through the Michael-acceptor and blocks the binding of USP50 to PYCARD/ASC, thereby reducing USP50-mediated cleavage of K63-linked ubiquitin chains of PYCARD/ASC. Finally, PM treatment in vivo generates an effect comparable to inflammasome deficiency in alleviating tendinopathy. Taken together, these findings demonstrate that PM alleviates the progression of tendinopathy by modulating AIM2-PYCARD/ASC stability via SQSTM1/p62-mediated selective autophagic degradation, thus providing a promising autophagy-based therapeutic for tendinopathy.Abbreviations: 3-MA: 3-methyladenine; AIM2: absent in melanoma 2; AT: Achilles tenotomy; ATP: adenosine triphosphate; BMDMs: bone marrow-derived macrophages; CHX: cycloheximide; Col3a1: collagen, type III, alpha 1; CQ: chloroquine; Cys: cysteine; DARTS: drug affinity responsive target stability; DTT: dithiothreitol; DUB: deubiquitinase; gDNA: genomic DNA; GSH: glutathione; His: histidine; IL1B/IL-1ß: interleukin 1 beta; IND: indomethacin; IP: immunoprecipitation; LPS: lipopolysaccharide; MMP: mitochondrial membrane potential; NLRP3: NLR family, pyrin domain containing 3; PM: pristimerin; PYCARD/ASC: PYD and CARD domain containing; SN: supernatants; SOX9: SRY (sex determining region Y)-box 9; SQSTM1: sequestosome 1; Tgfb: transforming growth factor, beta; TIMP3: tissue inhibitor of metalloproteinase 3; TNMD: tenomodulin; TRAF6: TNF receptor-associated factor 6; Ub: ubiquitin; USP50: ubiquitin specific peptidase 50; WCL: whole cell lysates.


Assuntos
Inflamassomos , Tendinopatia , Humanos , Inflamassomos/metabolismo , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Macroautofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação , Ubiquitina/metabolismo , Indometacina/farmacologia , Enzimas Desubiquitinantes/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Ligação a DNA/metabolismo
11.
Int J Dev Neurosci ; 84(1): 22-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37842754

RESUMO

BACKGROUND: Many medical experts prescribe indomethacin because of its anti-inflammatory, analgesic, tocolytic, and duct closure effects. This article presents an evaluation of the enduring impact of indomethacin on neonatal rats with hypoxic-ischemic (HI) insults, employing behavioral tests as a method of assessment. METHODS: The experiment was conducted on male Wistar-Albino rats weighing 10 to 15 g, aged between seven and 10 days. The rats were divided into three groups using a random allocation method as follows: hypoxic ischemic encephalopathy (HIE) group, HIE treated with indomethacin group (INDO), and Sham group. A left common carotid artery ligation and hypoxia model was applied in both the HIE and INDO groups. The INDO group was treated with 4 mg/kg intraperitoneal indomethacin every 24 h for 3 days, while the Sham and HIE groups were given dimethylsulfoxide (DMSO). After 72 h, five rats from each group were sacrificed and brain tissue samples were stained with 2,3,5-Triphenyltetrazolium chloride (TCC) for infarct-volume measurement. Seven rats from each group were taken to the behavioral laboratory in the sixth postnatal week (PND42) and six from each group were sacrificed for the Evans blue (EB) experiment for blood-brain barrier (BBB) integrity evaluation. The open field (OF) test and Morris water maze (MWM) tests were performed. After behavioral tests, brain tissue were obtained and stained with TCC to assess the infarct volume. RESULTS: The significant increase in the time spent in the central area and the frequency of crossing to the center in the INDO group compared with the HIE group indicated that indomethacin decreased anxiety-like behavior (p < 0.001, p < 0.05). However, the MWM test revealed that indomethacin did not positively affect learning and memory performance (p > 0.05). Additionally, indomethacin significantly reduced infarct volume and neuropathological grading in adolescence (p < 0.05), although not statistically significant in the early period. Moreover, the EB experiment demonstrated that indomethacin effectively increased BBB integrity (p < 0.05). CONCLUSIONS: In this study, we have shown for the first time that indomethacin treatment can reduce levels of anxiety-like behavior and enhance levels of exploratory behavior in a neonatal rat model with HIE. It is necessary to determine whether nonsteroidal anti-inflammatory agents, such as indomethacin, should be used for adjuvant therapy in newborns with HIE.


Assuntos
Hipóxia-Isquemia Encefálica , Animais , Ratos , Masculino , Animais Recém-Nascidos , Ratos Wistar , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Indometacina/farmacologia , Indometacina/uso terapêutico , Escala de Avaliação Comportamental , Aprendizagem em Labirinto , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Infarto
12.
Am J Vet Res ; 85(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113643

RESUMO

OBJECTIVE: Right dorsal colitis causes chronic colic associated with long-term treatment with nonsteroidal antiinflammatory drugs (NSAIDs). This study was designed to determine if NSAIDs could inhibit anion transporters that protect against intestinal mucosal injury in other species. ANIMALS: 20 healthy horses. METHODS: The effects of indomethacin (INDO) and firocoxib (FIR), on short-circuit current (Isc) in mucosa from the right dorsal colon (RDC) and right ventral colon (RVC) were measured in Ussing chambers by standard electrophysiological techniques. Immunohistochemical methods were used to detect apoptosis (caspase-3) with these NSAIDs and phenylbutazone (PBZ) and to locate the NKCC1 transporter. RESULTS: The Isc in RDC and RVC incubated with INDO or FIR was increased almost 3-fold (P < .0001) by prostaglandin E2 (PGE2) through a system inhibited by loop diuretics (P < .0001). Although these findings and anion replacement studies were consistent with anion secretion, the RDC also displayed an Isc response suggestive of a unique transporter apparently absent in RVC or NSAID-free solutions. In RDC, FIR, INDO, and PBZ induced apoptosis in the lower half of crypts. However, significant differences in apoptotic index were recorded in the RDC between NSAID-treated and control tissues (no NSAID). CLINICAL RELEVANCE: The effects of NSAIDs on Isc were consistent with reduced anion secretion, which could represent the pharmacological equivalent of the transport failure responsible for Cystic Fibrosis (CF) in other species. Failure of anion secretion could interfere with buffering acid from intraluminal fermentation, which could suggest a treatment target for right dorsal colitis.


Assuntos
Colite , Doenças dos Cavalos , Animais , Cavalos , Anti-Inflamatórios não Esteroides/farmacologia , Indometacina/farmacologia , Mucosa Intestinal , Colo , Ânions/farmacologia , Colite/veterinária , Apoptose , Doenças dos Cavalos/tratamento farmacológico
13.
Bull Exp Biol Med ; 176(1): 68-71, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38091141

RESUMO

The anti-inflammatory effect of technologically processed antibodies (TPA) to immune targets (MHC I and MHC II) was assessed in the carrageenan-induced rat paw edema model. The parameters "increase in edema" and "suppression of edema" significantly decreased (p<0.05) against the background of treatment with TPA and the reference drug indomethacin compared to the placebo group. The tested TPA produced an anti-inflammatory effect.


Assuntos
Indometacina , Inflamação , Ratos , Animais , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Indometacina/farmacologia , Indometacina/uso terapêutico , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Complexo Principal de Histocompatibilidade
14.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069044

RESUMO

Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.


Assuntos
Indometacina , Úlcera Gástrica , Camundongos , Animais , Indometacina/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Etanol/farmacologia , Interleucina-6/metabolismo , Dinoprostona/metabolismo , Azul Evans/metabolismo , Ocludina/metabolismo , Camundongos Endogâmicos ICR , Mucosa Gástrica/metabolismo
15.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139257

RESUMO

Gastric ulcers are often exacerbated by factors such as nonsteroidal anti-inflammatory drugs (NSAIDs) and inflammation, and they have a substantial impact on a significant portion of the population. Notably, indomethacin is recognized as a prominent contributor to ulcers. This study investigated this potential method, with normalization to the anti-inflammatory and antiulcer properties of deep-sea water (DSW)-derived mineral water, using an indomethacin-induced gastric ulcer model in rats. The study involved four groups (n = 6 rats/group): normal control group (CON), indomethacin-only group (IND), indomethacin with trace mineral water group (TM), and indomethacin with high magnesium low sodium water group (HMLS). For three weeks, the CON and IND groups consumed tap water, while the TM and HMLS groups had access to mineral water. Gastric ulcers were induced on the final day using indomethacin, for all groups except the CON group. The results demonstrated that HMLS intake significantly improved gastric mucosal damage, preserved mucin stability, and increased gastric thickness, indicating its potential to prevent and alleviate indomethacin-induced gastric ulcers. Furthermore, HMLS consumption led to the upregulation of key genes associated with inflammation and a reduction in inflammatory cytokines. These findings suggest that DSW-derived mineral water, and particularly its high Mg2+ content, may offer promising health benefits including anti-inflammatory and anti-ulcer properties.


Assuntos
Antiulcerosos , Águas Minerais , Úlcera Gástrica , Ratos , Animais , Indometacina/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Ratos Wistar , Antiulcerosos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios/efeitos adversos , Mucosa Gástrica , Água do Mar , Inflamação/tratamento farmacológico
16.
J Neurochem ; 167(5): 633-647, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37916541

RESUMO

L-Dopa, while treating motor symptoms of Parkinson's disease, can lead to debilitating L-Dopa-induced dyskinesias, limiting its use. To investigate the causative relationship between neuro-inflammation and dyskinesias, we assessed if striatal M1 and M2 microglia numbers correlated with dyskinesia severity and whether the anti-inflammatories, minocycline and indomethacin, reverse these numbers and mitigate against dyskinesia. In 6-OHDA lesioned mice, we used stereology to assess numbers of striatal M1 and M2 microglia populations in non-lesioned (naïve) and lesioned mice that either received no L-Dopa (PD), remained non-dyskinetic even after L-Dopa (non-LID) or became dyskinetic after L-Dopa treatment (LID). We also assessed the effect of minocycline/indomethacin treatment on striatal M1 and M2 microglia and its anti-dyskinetic potential via AIMs scoring. We report that L-Dopa treatment leading to LIDs exacerbates activated microglia numbers beyond that associated with the PD state; the severity of LIDs is strongly correlated to the ratio of the striatal M1 to M2 microglial numbers; in non-dyskinetic mice, there is no M1/M2 microglia ratio increase above that seen in PD mice; and reducing M1/M2 microglia ratio using anti-inflammatories is anti-dyskinetic. Parkinson's disease is associated with increased inflammation, but this is insufficient to underpin dyskinesia. Given that L-Dopa-treated non-LID mice show the same ratio of M1/M2 microglia as PD mice that received no L-Dopa, and, given minocycline/indomethacin reduces both the ratio of M1/M2 microglia and dyskinesia severity, our data suggest the increased microglial M1/M2 ratio that occurs following L-Dopa treatment is a contributing cause of dyskinesias.


Assuntos
Discinesias , Doença de Parkinson , Ratos , Camundongos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Microglia , Minociclina/farmacologia , Minociclina/uso terapêutico , Ratos Sprague-Dawley , Corpo Estriado , Discinesias/complicações , Oxidopamina/toxicidade , Oxidopamina/uso terapêutico , Inflamação/complicações , Anti-Inflamatórios/farmacologia , Indometacina/farmacologia , Indometacina/uso terapêutico , Antiparkinsonianos/farmacologia
17.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003619

RESUMO

Both the endocannabinoid system (ECS) and estrogens have significant roles in cardiovascular control processes. Cannabinoid type 1 receptors (CB1Rs) mediate acute vasodilator and hypotensive effects, although their role in cardiovascular pathological conditions is still controversial. Estrogens exert cardiovascular protection in females. We aimed to study the impact of ECS on vascular functions. Experiments were performed on CB1R knockout (CB1R KO) and wild-type (WT) female mice. Plasma estrogen metabolite levels were determined. Abdominal aortas were isolated for myography and histology. Vascular effects of phenylephrine (Phe), angiotensin II, acetylcholine (Ach) and estradiol (E2) were obtained and repeated with inhibitors of nitric oxide synthase (NOS, Nω-nitro-L-arginine) and of cyclooxygenase (COX, indomethacin). Histological stainings (hematoxylin-eosin, resorcin-fuchsin) and immunostainings for endothelial NOS (eNOS), COX-2, estrogen receptors (ER-α, ER-ß) were performed. Conjugated E2 levels were higher in CB1R KO compared to WT mice. Vasorelaxation responses to Ach and E2 were increased in CB1R KO mice, attenuated by NOS-inhibition. COX-inhibition decreased Phe-contractions, while it increased Ach-relaxation in the WT group but not in the CB1R KO. Effects of indomethacin on E2-relaxation in CB1R KO became opposite to that observed in WT. Histology revealed lower intima/media thickness and COX-2 density, higher eNOS and lower ER-ß density in CB1R KO than in WT mice. CB1R KO female mice are characterized by increased vasorelaxation associated with increased utilization of endothelial NO and a decreased impact of constrictor prostanoids. Our results indicate that the absence or inhibition of CB1Rs may have beneficial vascular effects.


Assuntos
Receptores de Canabinoides , Remodelação Vascular , Animais , Feminino , Camundongos , Acetilcolina/metabolismo , Aorta Abdominal/metabolismo , Ciclo-Oxigenase 2/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Indometacina/farmacologia , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores de Canabinoides/metabolismo , Vasodilatação
18.
J Control Release ; 364: 272-282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866406

RESUMO

Herein, we report a facile method for converting carboxylate-containing indomethacin (Idm) into a cyclooxygenase-2 (COX-2) selective inhibitor via the amidation of an unnatural peptide sequence (Nal-Nal-Asp). The resulting indomethacin amides (i.e., Idm-Nal-Nal-Asp) have high selectivity for COX-2, and can self-assemble into a one-component supramolecular hydrogel that acts as a 'self-delivery' system for boosting anti-inflammatory efficacy. Self-assembled Idm-Nal-Nal-Asp hydrogel robustly inhibits COX-2 expression in lipopolysaccharide (LPS)-activated Raw 264.7 macrophages while also exhibits superior anti-inflammatory and antioxidant activities via reactive oxygen species (ROS)-related NF-κB and Nrf2/HO-1 pathways. Moreover, a rabbit model of endotoxin-induced uveitis (EIU) reveals that the Idm-Nal-Nal-Asp hydrogel outperforms clinically used 0.1 wt% diclofenac sodium eye drops in terms of in vivo anti-inflammatory efficacy via topical instillation route. As a rational approach to designing and applying COX-2 selective inhibitors, this work presents a simple method for converting non-selective nonsteriodal anti-inflammatory drugs (NSAIDs) into highly selective COX-2 inhibitors that can self-assemble into supramolecular hydrogel for anti-inflammation applications.


Assuntos
Indometacina , Nanofibras , Animais , Coelhos , Indometacina/química , Indometacina/farmacologia , Ciclo-Oxigenase 2 , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Hidrogéis/química
19.
J Med Food ; 26(11): 820-830, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37902984

RESUMO

Rhus coriaria L. (Anacardiaceae), also known as Sumac, is commonly used as a spice, flavoring agent, and as a traditional medicinal herb. This includes also the traditional use for treating asthma, catarrh, and common colds. The accumulating evidence supports its cardioprotective, antidiabetic, neuroprotective, anticancer, gastroprotective, antibacterial, anti-inflammatory, antiviral, antioxidant, and respiratory effects. However, there are no previous studies that have shown its effects and mechanism in the airway smooth muscle tone, and therefore, the aim of our study was to investigate the in vitro pharmacological action of R. coriaria L. extract (RCE) on the rat isolated tracheal and bronchial preparations by exploring its relaxant activity and mechanism of action. The direct relaxant effect of RCE (0.1-0.7 mg/mL) was tested in the rat bronchi and trachea rings precontracted by carbachol (CCh). In addition, the pretreatment with RCE (1 mg/mL) was tested on the bronchial and tracheal reactivity induced by CCh, potassium chloride (KCl), or CaCl2. In addition, the cyclooxygenase inhibitor indomethacin and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME), respectively, were used for exploring the mechanisms of RCE-induced relaxation and reduction of reactivity. Our findings demonstrated that RCE induced a concentration-dependent relaxation and a significant reduction of reactivity, significantly reduced with either indomethacin or L-NAME. In addition, RCE decreased the responsiveness to KCl and affected the extracellular Ca2+-induced contraction in the tissues with added CCh or KCl in Ca2+-free Krebs-Henseleit solution. In summary, we have shown that RCE displayed relaxant activities in the in vitro airway smooth muscles, and the possible mechanisms seems to involve the prostaglandin, nitric oxide, and Ca2+ pathways. Taken together, our findings indicate the potential role of RCE in the treatment of respiratory diseases with limited airflow, or obstructive respiratory diseases, and could justify its traditional use in the respiratory diseases.


Assuntos
Asma , Rhus , Ratos , Animais , Rhus/metabolismo , Relaxamento Muscular , NG-Nitroarginina Metil Éster/farmacologia , Frutas/metabolismo , Músculo Liso , Etanol , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Indometacina/farmacologia
20.
Biomolecules ; 13(9)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759783

RESUMO

Indomethacin is a non-selective NSAID used against pain and inflammation. Although cyclooxygenase (COX) inhibition is considered indomethacin's primary action mechanism, COX-independent ways are associated with beneficial effects in cancer. In colon cancer cells, the activation of the peroxisome proliferator-activated receptor-γ (PPAR-γ) is related to the increase in spermidine/spermine-N1-acetyltransferase-1 (SSAT-1), a key enzyme for polyamine degradation, and related to cell cycle arrest. Indomethacin increases the SSAT-1 levels in lung cancer cells; however, the mechanism relying on the SSAT-1 increase is unclear. Thus, we asked for the influence of the PPAR-γ on the SSAT-1 expression in two lung cancer cell lines: H1299 and A549. We found that the inhibition of PPAR-γ with GW9662 did not revert the increase in SSAT-1 induced by indomethacin. Because the mRNA of SSAT-1 suffers a pre-translation retention step by nucleolin, a nucleolar protein, we explored the relationship between indomethacin and the upstream translation regulators of SSAT-1. We found that indomethacin decreases the nucleolin levels and the cyclin-dependent kinase 1 (CDK1) levels, which phosphorylates nucleolin in mitosis. Overexpression of nucleolin partially reverts the effect of indomethacin over cell viability and SSAT-1 levels. On the other hand, Casein Kinase, known for phosphorylating nucleolin during interphase, is not modified by indomethacin. SSAT-1 exerts its antiproliferative effect by acetylating polyamines, a process reverted by the polyamine oxidase (PAOX). Recently, methoctramine was described as the most specific inhibitor of PAOX. Thus, we asked if methoctramine could increase the effect of indomethacin. We found that, when combined, indomethacin and methoctramine have a synergistic effect against NSCLC cells in vitro. These results suggest that indomethacin increases the SSAT-1 levels by reducing the CDK1-nucleolin regulatory axis, and the PAOX inhibition with methoctramine could improve the antiproliferative effect of indomethacin.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Acetiltransferases/genética , Proteína Quinase CDC2 , Ciclo-Oxigenase 2 , Indometacina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Oxirredutases , Receptores Ativados por Proliferador de Peroxissomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...